Evaluation of Nontargeted Mass Spectral Data Acquisition Strategies for Water Analysis and Toxicity-Based Feature Prioritization by MS2Tox.
Peets P, Rian MB, Martin JW, Kruve A 2024 Evaluation of Nontargeted Mass Spectral Data Acquisition Strategies for Water Analysis and Toxicity-Based Feature Prioritization by MS2Tox. Environ Sci Technol 58, 17406-17418.
Abstract
The machine-learning tool MS2Tox can prioritize hazardous nontargeted molecular features in environmental waters, by predicting acute fish lethality of unknown molecules based on their MS2 spectra, prior to structural annotation. It has yet to be investigated how the extent of molecular coverage, MS2 spectra quality, and toxicity prediction confidence depend on sample complexity and MS2 data acquisition strategies. We compared two common nontargeted MS2 acquisition strategies with liquid chromatography high-resolution mass spectrometry for structural annotation accuracy by SIRIUS+CSI:FingerID and MS2Tox toxicity prediction of 191 reference chemicals spiked to LC-MS water, groundwater, surface water, and wastewater. Data-dependent acquisition (DDA) resulted in higher rates (19-62%) of correct structural annotations among reference chemicals in all matrices except wastewaters, compared to data-independent acquisition (DIA, 19-50%). However, DIA resulted in higher MS2 detection rates (59-84% DIA, 37-82% DDA), leading to higher true positive rates for spectral library matching, 40-73% compared to 34-72%. DDA resulted in higher MS2Tox toxicity prediction accuracy than DIA, with root-mean-square errors of 0.62 and 0.71 log-mM, respectively. Given the importance of MS2 spectral quality, we introduce a "CombinedConfidence" score to convey relative confidence in MS2Tox predictions and apply this approach to prioritize potentially ecotoxic nontargeted features in environmental waters.