Backbone NMR assignments of the essential oxidoreductase tryparedoxin from the human pathogenic parasite Trypanosoma cruzi.
Schwegler E, Hellmich UA 2025 Backbone NMR assignments of the essential oxidoreductase tryparedoxin from the human pathogenic parasite Trypanosoma cruzi. Biomol NMR Assign ,
Abstract
Over 7 million people worldwide are affected with Chagas disease, a lifelong debilitating and potentially fatal Neglected Tropical Disease caused by the single cell protozoan parasite Trypanosoma cruzi. To maintain viability and to reproduce under the harsh conditions within a host organism, pathogens express a variety of protecting enzymes and virulence factors that can serve as potential drug targets. To protect itself from redox stress, T. cruzi takes advantage of a unique thiol metabolism. For instance, a cytosolic peroxide clearance cascade is centered on the conserved oxidoreductase Tryparedoxin (Tpx). Tpx efficiently distributes reducing equivalents across the parasitic cell through the promiscuous yet selective binding of numerous up- and downstream clients. However, the exact structure and binding interfaces of this central protein binding hub remain unknown. To study the redox-dependent structural dynamics of T. cruzi Tpx, and its interactions with binding partners, we determined the 1H, 13C, 15N-backbone NMR assignments of the enzyme in the reduced and oxidized state. In agreement with earlier NMR studies on Tpx from related protozoans, we report redox-dependent changes in the enzyme's dithiol active site that could play a crucial role in the recognition of physiological substrates and should be considered in the rational design of small molecule inhibitors.